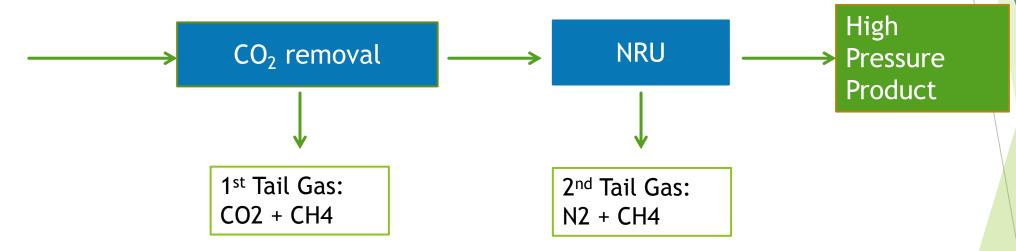

Best Practices in Nitrogen & Oxygen Rejection Technology

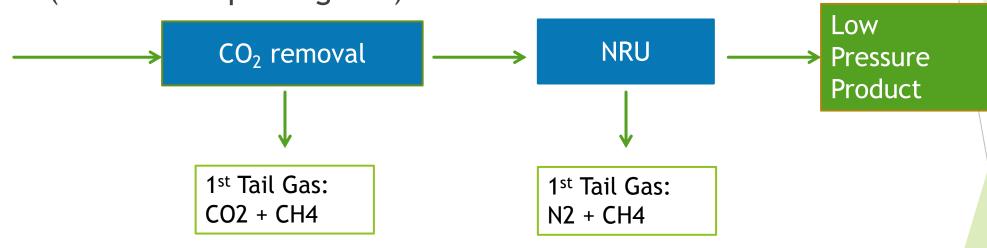
Amir Ghasdi Business Development Director Xebec Adsorption

OVERVIEW

- Biogas Upgrading Process
- Why NRU?
- NRU Technology Review
- Case Studies

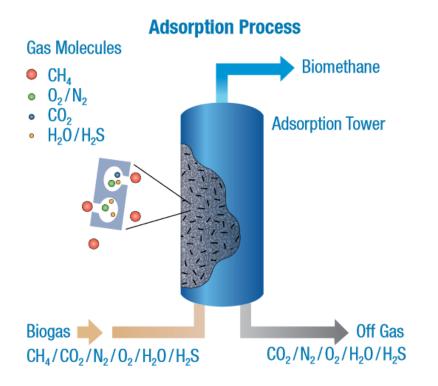

Biogas Upgrading Process

Biogas Upgrading Technology-Review

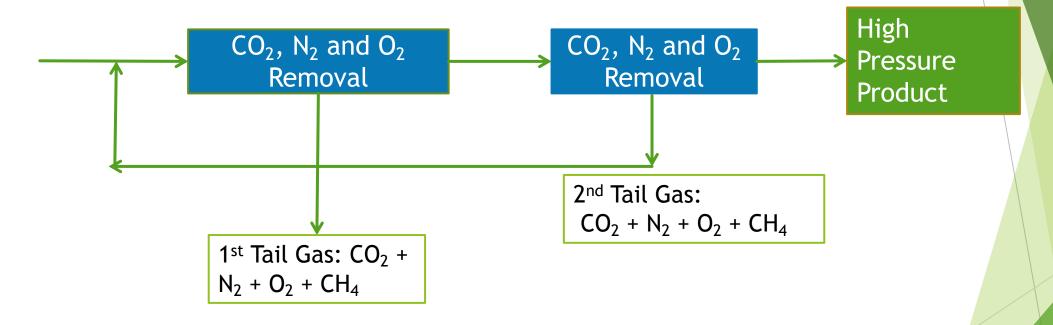

Comparison	PSA-CO ₂ removal	PSA-CO ₂ , O ₂ and N ₂ removal	Membrane	Wet Scrubber
O ₂ Removal	Yes/No Depends on supplier	Yes	Partially (low)	No
N ₂ Removal	No	Yes	No	No
Pros	High recovery	Single Step to remove CO ₂ -N ₂ - O ₂	High Recovery	High Recovery
Cons	Required to add a NRU	Recovery is a function of inlet N ₂	 Required to add a NRU Sensitive to VOCs Higher operating pressure than PSA -Safety (O2) 	Required to add a NRU Introducing N2 and O2 on top of inlet content

(1) Conventional Two-step purification: CO₂ Removal + NRU (N2 removal)

- High Methane Loss For High N2
- Sensitivity of NRU unit to CO₂
- Operating Two Different Technologies independently (Increasing probability of system downtime)


 (2) New Two-step purification: CO₂ Removal + NRU (methane capturing PSA)

High Energy Consumption (require product compressor and high recycle ratio)


Operating Two Different Technologies (Increasing probability of system downtime and not meeting the product spec)

► (3) One Step PSA:

\triangleright Methane recovery and size of the PSA are a function of inlet N₂

► (4) New Two-step purification: CO₂, N₂, O₂ Removal Unit

► (4) New Two-step purification: CO₂, N₂, O₂ Removal Unit

Advantages:

- Lower power consumption due to:
 - Lower operating pressure (80-120 psig)
 - Lower internal recycle flow
 - High pressure produce compared to atmospheric pressure from new NRU solution

(4) New Two-step purification: CO₂, N₂, O₂ Removal Unit

Advantages (Cont.):

- Higher system reliability:
 - Both PSA units can remove CO2, N2 and O2, in case of higher and unexpected N2 to the system, product quality is guaranteed by scarifying the recovery
 - Less sensitive to impurities such as VOSs, H2S, etc, No need to remove VOCs

NRU Technology-Summary

Comparison	Conventional Two Step Purification: CO ₂ +NRU (HP)	New Two Step Purification: CO ₂ + NRU (LP)	Single Step PSA	Two Step PSA
Recovery	Medium (Function of N_2)	High	Medium (Function of N_2)	High
Power Consumption	Medium (Function of N_2)	High	Low (Function of N_2)	Medium (Function of inlet N2)
CAPEX	High (Function of N_2)	Medium	Low (Function of N_2)	High (Function of N2)

Case Study - Single Stage PSA - Low N₂

Project: Gaz Team

Location: France

Technology: PSA

Feed: Biogas from dry anaerobic digestion

RNG use: GRDF Pipeline

Raw gas: 60% CH4; 38% CO2; 2% N2/O2;

Recovery 97.5%

Power Consumption: 0.2 kWh/NCM (105

MMBTU/MWh)

Product gas: 985 Btu/scf

Case Study - Single Stage PSA - Low N₂

Project: Escondido WWTP

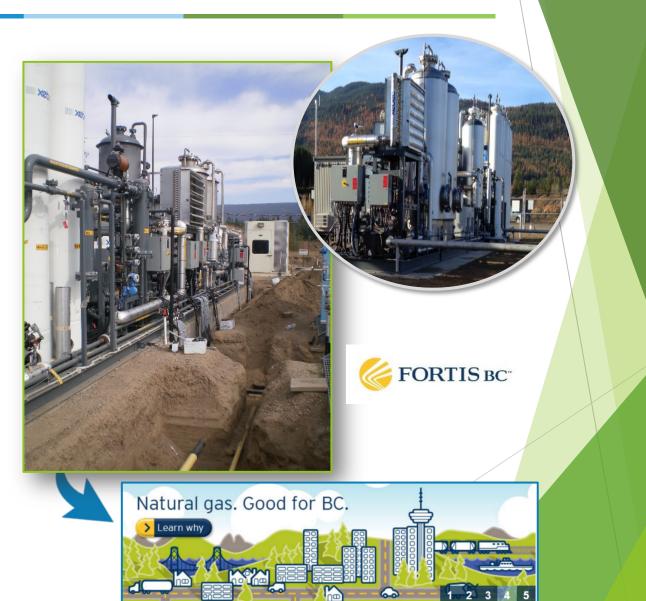
Location: California

Technology: PSA

Feed: Biogas from WWTP

RNG use: Rule 30

Raw gas: 60% CH4; 38% CO2; 2% N2/O2;


Power Consumption: 0.25 kWh/NCM (80 MMBTU/MWh)

Product gas: 980-990 Btu/scf

Case Study - Single Stage PSA after CO2 removal unit

Project: Salmon Arm LFG Location: British Colombia Technology: PSA Feed: Biogas from LFG **RNG use:** Pipeline **Raw gas:** 52% CH4; 36% CO2; 4-12% N2/O2; Power Consumption: 0.25 kWh/NCM (60 MMBTU/MWh) Product gas: 990 Btu/scf

Case Study - Two-Stage PSA CO₂, N₂ and O₂ removal unit

Project: Genova Landfill

Location: Italy

Technology: Two-Stage PSA for CO2, N2 and O2

Feed: Biogas from LFG, 16% N_2 + O_2

RNG use: Pipeline

Raw gas to PSA: 46% % CH4; 36% CO2; 18% N2/O2;

Product gas: 970 Btu/scf

Xebec Rotary Valve PSA

ROTARY VALVE

Reduces significantly the plant's design complexity, footprint and overall capital investment

► FAST CYCLE ROTARY VALVE

Adjusts real time to biogas flow and composition changes while maintaining purity and maximum sales gas recovery

CONTACT INFO

Amir Ghasdi

- Business Development Director
- Xebec Adsorption Inc.
- ► +1-514-247-1752
- aghasdi@xebecinc.com