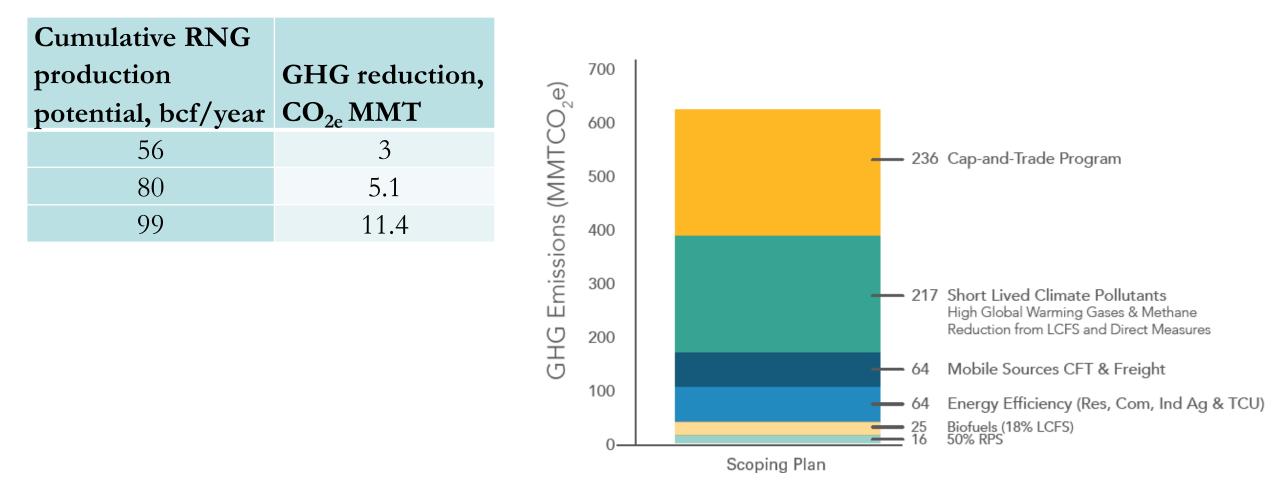

Gasification to RNG

Arun Raju Center for Renewable Natural Gas CE-CERT, University of CA, Riverside

RNG from California Resources

- Center for Renewable Natural Gas
- Part of CE-CERT (Center for Environmental Research and Technology), University of California, Riverside
- Recently released study on RNG potential from in-state resources*
 - Estimate of wet feedstock availability: landfill gas, animal manure, biosolids, food and green waste
 - Pipeline grade RNG volume potential, production costs, GHG reduction & carbon abatement costs
- Compare with established baseline
 - Long term Renewable Portfolio Standard (RPS) modeling
 - 50-80% RPS scenarios using Resolve model
 - GHG reduction, electricity and carbon abatement costs



GHG Reduction Potential

• RNG utilization would result in meaningful and sustained GHG emission reductions

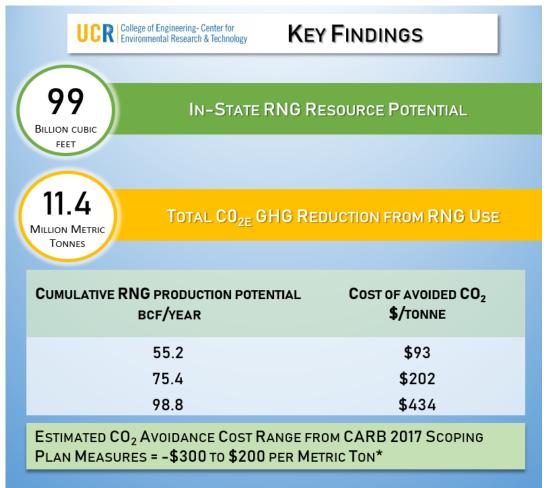
Carbon Abatement Cost

- Carbon abatement costs are comparable to other pathways
 - Scoping Plan has very high cost estimates for RNG Meas

Cumulative RNG production	Cost of avoided CO ₂ ,		
potential, bcf/year	\$/metric ton		
55.2	\$93		
75.4	\$202		
98.8	\$434		

UCR estimates based on feedstock estimates, availability & specific LCFS CI values^{*}

https://www.arb.ca.gov/cc/scopingplan/scoping_plan_2017.pdf


5	Measure	Cost/metric ton in 2030	Cost/metric ton 2021-2030
	50% RPS	\$175	\$100 - \$200
	Liquid Biofuels (18% CI Reduction Target LCFS)	\$150	\$100 - \$200
	Short-Lived Climate Pollutant Strategy	\$25	\$25
	10% incr. RPS + 10 GW btm solar PV	\$350	\$250 - \$450
	Liquid Biofuels (25% CI Reduction Target for LCFS)	\$900	\$550 - \$975
	5% Increased RNG	\$1500	\$1350 -\$3000

California RNG Potential

- CA annual RNG potential from wet feedstocks ~ 99 bcf (5% of 2030 gas consumption)
 - landfill gas, animal manure, biosolids, food and green waste
 - Production cost range \$6-68 /mmbtu
 - Up to 46 bcf under \$13/mmbtu
 - Up to 80 bcf under \$30/mmbtu
- GHG reduction potential ~ $11.4 \text{ CO}_{2e} \text{ MMT}$
- RNG can play a key role in helping the state achieve climate goals
- Reaching beyond 99 bcf requires thermochemical conversion

*https://www.arb.ca.gov/cc/scopingplan/scoping_plan_2017.pdf

Resources

- Significantly larger quantities of resources are available
- Wet feedstocks (LFG and AD): 99 bcf/year
- Potential for an additional 10-20% of throughput:
 - Landfilled organics
 - Biomass
- State goal is 75 % of solid waste to be source reduced, recycled, or composted by 2020 (AB 341)
- Recyclables export is facing challenges
 - Plastics (polyethylene, propylene, styrene)
- RNG is attractive both technologically and economically

Economist.com

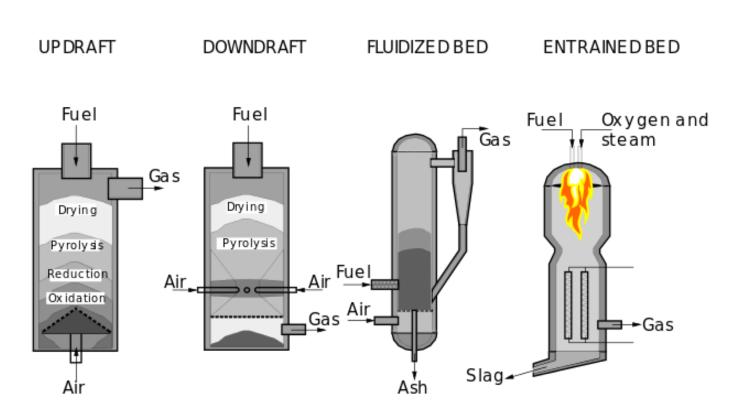
Technology Options

- AD is commercially mature and widely used but for limited feedstock options
- Low to medium efficiencies complete carbon conversion not achieved
- Often used for power generation
- Gasification offers high carbon conversion and thermal efficiencies
- Can convert most carbonaceous matter

	Thermochemical	Biological
Reaction rates; g/L/h	10 ³ - 10 ⁴	101 - 102
Feedstock flexibility	High	Low
Thermal efficiency	High	Medium/low
Temperature, °C	~1000	~30
Pressure, atm	20-50	1

J. J. Spivey and A. Egbebi, H₂ from coal-derived syngas: catalytic synthesis of ethanol as a H₂ carrier, ACS National Meeting, Apr 2008

UCR College of Engineering- Center for Environmental Research & Technology



Gasification

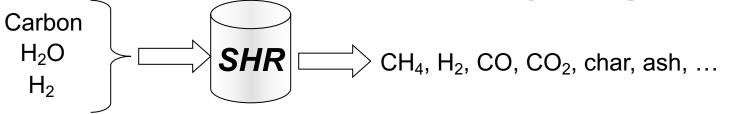
 $C + Gasifying agent + Heat (700-1400 °C) \longrightarrow Gases (H_2, CO...) + ash$

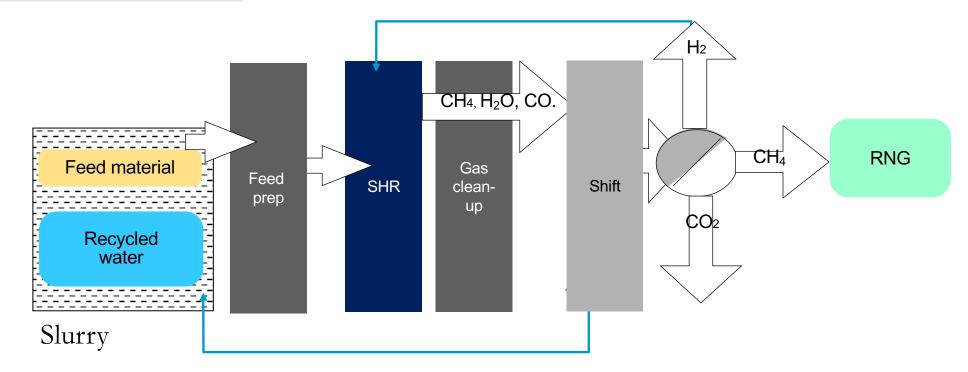
Partial oxidation (O₂)
Hydrogasification (H₂)
Steam pyrolysis (H₂O)

r_{O_2}	>>	r_{H_2O}	>	r_{CO_2}	>	r_{H_2}
10 5		3		1		3.1-3
At 1073 K and 0.1 atm*						

Gasification to RNG

- High Efficiency
- Feedstock Flexibility
 - Accept most carbonaceous matter
 - Waste conversion
- Product Flexibility
 - Syngas is a versatile feedstock
- Environmental Benefits
 - GHG and criteria pollutant mitigation
- High capital costs
 - Distributed facilities
- Technology maturity
 - Innovative solutions needed
 - Demonstration & pre-commercial activity
- Policy barriers





Steam Hydrogasification

 $C + \mathbf{H_2O} + 2H_2 \rightarrow CH_4 + \mathbf{H_2O} + 75kJ / mol + others$

J.M. Norbeck & C.E. Hackett, U.S. Patent 7,208,530 B2

SHR Gasifier

- Fluidized bed gasifier
- 200 lb/day throughput (dry basis)
- Slurry feed system hydrothermal pretreatment
- Gas cleanup & water gas shift

	Performance Data
Product gas	1200 - 1500 kg/ ton
yield	feed
Energy content	12 - 15 GJ/ton feed
CO content	5-20 Vol%
CH ₄ content	60-80 Vol%
Sulfur, Tar,	< 0.01 ppm
NH ₃	

Partial Oxidation Gasification

- Taylor Energy Gasification technology
 - Pilot 3 TPD gasifier
 - Partial oxidation with pulse detonation
 - Add Fischer-Tropsch reactor
 - Planned RNG production methanation catalyst development ongoing
 - MSW feedstock
 - Net thermal efficiency $\sim 50\%$

Gasification to RNG

- California RNG potential from LFG & AD at 100 bcf per year*
- Gasification will significantly increase potential from in-state resources
 - Improved waste management
- Higher efficiencies and feedstock flexibility at higher costs
- Pilot scale demonstration ongoing
 - Commercial deployment timeframe 5-10 years

