

Hydrogen Sulfide Removal From Biogas & Landfill Gas

Basics of H2s & Commercial Removal Technologies

Agenda

Hydrogen Sulfide Removal From Biogas and Landfill Gas

Basics of H₂S and Commercial Removal Technologies

Presented By

01 Basics of Hydrogen Sulfide

- What is it, where does it originate?
- What is the impact of H2S, What are the regulations?

02 Commercial Options for H2S Removal

- Integral with CO2 Removal (Molecular Gate[™], Water Wash)
- Regenerative Media Systems
- Replaceable Media Systems

03 Deep Dive: Controlling the Process Parameters to Enhance Replaceable Media system

Basics of Hydrogen Sulfide

- What is it, where does it originate?
- What is the impact of H_2S
- What are the regulations?

What Is Hydrogen Sulfide?

- Colorless Gas that is an Irritant and Dangerous Asphyxiant
 - Characteristically a "rotten egg" smell
 - Can be detected in concentrations as low as 0.1-1.5 ppm
- Irritant and asphyxiant
 - NIOSH PEL (Permissible Exposure Level): 10 ppm
 - NIOSH IDLH (Immediately Dangerous to Life and Health): 100 ppm
- Flammable in a wide range of concentrations
 - Explosion Level in air 4% 44% v/v
 - Heavier than air tends to collect in low-lying area

Sources of Hydrogen Sulfide

- Municipal Solid Waste Landfills
 - Waste Water Treatment Plant sludge
 - Pulp & paper mill wastes
 - Gypsum/drywall
 - Alone and as part of Construction and Demolition waste streams
 - Construction and Demolition fines (small particles)
 - Major Storm event (hurricanes, tornado) debris can change landfill characteristics quickly
- Agricultural Digesters
 - Feed for Livestock influences H₂S Content in Manure
 - Rendering waste

H2S impact on Downstream Equipment

- Detrimental to metallic components
- Causes Deposits on Valves
- H₂S combustion in Flare or Thermal Oxidizer leads to SO₂ formation
 - Air Permits of the Biogas Site affected by SO₂ Emissions
 - 100 TPY (tons per year) of SO₂ results in Major Source Status for Air Permitting by local EPA

H₂S Process Selection Design Considerations

- Total Biogas flow
 - Current flow, anticipated peak flow, and minimum flow
 - Project flow 20 years outward
- H_2S concentration projection at the noted flows
- Requirements for treated gas and waste gas
 - Flaring of waste gas Air Permit
 - RNG Pipeline standard, CNG Vehicle Fuel requirement
- Feed gas pressure and anticipated system pressure drop
 - Design feed blower to deliver at needed pressure
 - How much drop should I expect to see across the treatment system?
- Feed gas temperature requirement
- Available equipment footprint at site
- Scalability grow with anticipated biogas flow?.

Equipment Options for Commercial H₂S Removal

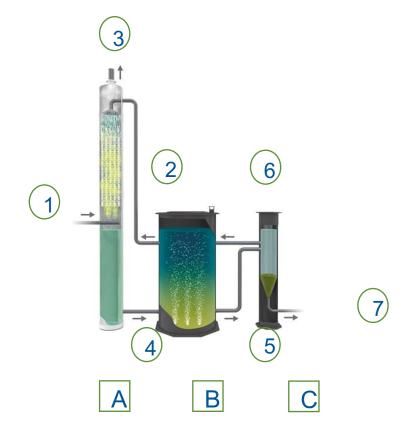
- Integral with CO_2 Removal (Molecular GateTM, Water Wash)
- Regenerative Media Systems
- Replaceable Media Systems

Molecular Gate[™] Pressure Swing Adsorption by Guild Associates

- H₂S removed with CO₂, siloxanes, VOCs and water
- Media is regenerated using vacuum compression
- Media lasts the life of equipment (20+ years)
- H₂S is combusted in the TOX/Flare with other contaminants
- Field proven for feed gas of 7000 PPM reduced to pipeline standards
- Requires air permits for H₂S combustion

Water Wash CO₂ Removal Technology

- H₂S removed with CO₂ in water wash tower
- CO₂ is released to atmosphere/burned in TOX
- Media lasts the life of equipment (20+ years)
- H₂S accumulates in water, needs to be treated and replaced



Regenerative Media Systems

- Wet scrubber application for feed biogas
- Liquid is regenerated by various methods
- "Caustic" solution chelated iron, hydroxide, bicarbonate ...
- Solution can be recovered and recycled
- Chemical process requires monitoring
- Biological regeneration is an option

Example of Regenerative Process

- A. Absorber/contactor
- B. Reactor
- C. Settling
- 1. Raw (sour) LFG
- 2. Wash solution
- 3. Treated (sweet) LFG
- 4. High-sulfur liquid
- 5. Concentrated-sulfur liquid
- 6. Recovered wash solution
- 7. Elemental sulfur paste

Replaceable Media Systems – Activated Carbon Media

Feed gas passes through a vessel of Activated Carbon

- Media adsorbs H₂S in pores of media
- Media tends to adsorb other non-target chemicals, reducing H₂S capacity
- Spent media can typically be disposed in landfills, can possibly be classified as Hazardous
- Elemental sulfur is "fixed" and doesn't leach back into waste
- Media generally removes about 25% of its weight in H_2S

Replaceable Media Systems – Catalytic Reaction Media

Feed gas passes through a vessel of Catalytic Reactive Media

- Feed gas fed through media
- Sequential chemical reaction enabled by media
 - First with water, then oxygen
 - Results in elemental sulfur deposited on media
- Iron Sponge media prone to agglomerating particles into large bricks, resulting in less capacity, higher removal costs, higher pressure drops
- BSR-050 from Guild Associates not susceptible to bricking
- Media capacity typically 10-15% for Iron Sponge, 120% for BSR-050
- Spent media can typically be disposed in landfills

Problem Statement and Objectives

Problem:

• H₂S Removal is problematic, expensive and unpredictable

Objectives:

- Maximize utilization of H₂S scavenger media to reduce cost and logistics burdens associated with natural gas purification
- Relationships between [O₂], [H₂O], [H₂S] and temperature on media performance

Basics of Media Reaction Chemistry

H₂S Reaction Chemistry

$$M-O + H_2S \rightarrow M-S + H_2O$$

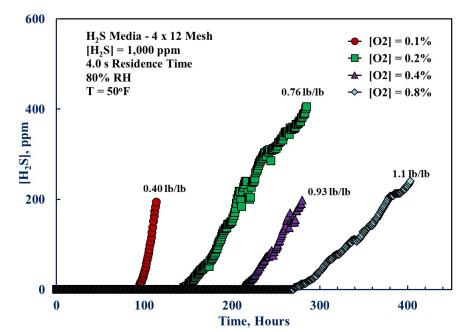
 $M-S + \frac{1}{2} O_2 \rightarrow M-O + S$

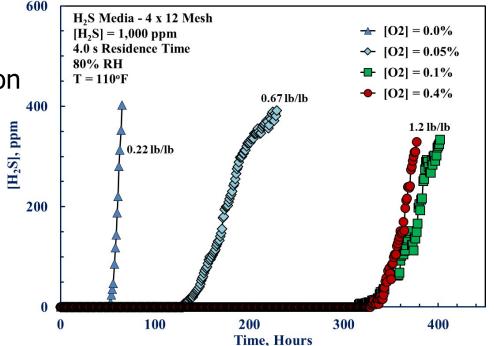
Two Reactions:

- Metal sulfide formation very fast
- Site regeneration slower and must be balanced

Reaction is Catalytic

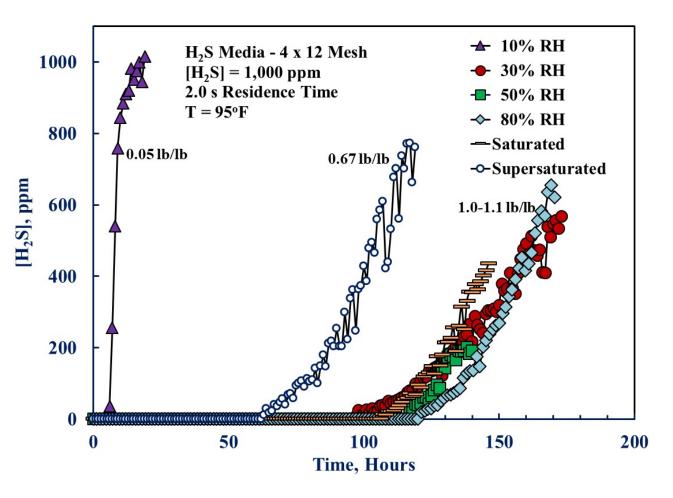
- O₂ necessary for reaction
- Reaction slows then terminates as elemental sulfur blocks reaction sites




BSR-050 H2S Media

Effects of [O₂] and Temperature

- More O₂ required at lower T to maximize capacity
- Operation at increased T allows for operation at lower O₂



Effects of [H₂O]

H₂O is necessary for the reaction to proceed – active site is a hydrated metal oxide/hydroxide

- Fill pores of media with water, preventing H₂S from accessing active sites within media – leading to decreased capacity
- Force reaction to external surface, leading to "bricking" and clumping of media
- Drying media does not return capacity media is "eggshelled" with sulfur and/or iron sulfide

Effects of [H₂O] – Case Study

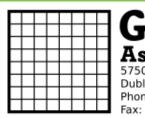
Spent media removed from vessel where water had significantly condensed H_2S removal capacity = 0.78 lb/lb

Spent media in vessel from process where water condensation was minimized H₂S removal capacity = 1.15 lb/lb

Summary of Temperature, O₂ and H₂O

Temperature, $[H_2O]$, $[O_2]$ and $[H_2S]$ in the process stream will impact H_2S removal capability of media

- Higher temperatures required for optimal operation when [O₂] is low
- Prolonged periods of water condensation in bed detrimental to performance
 - Reduced H₂S removal capacity
 - "Bricking"



Thank You!

Please Contact Guild Associates should you have questions!

Guild Associates, Inc.

www.GuildAssociates.com H2S@GuildAssociates.com 614-798-8215

Gatild Associates, Inc. 5750 Shier Rings Road Dublin, OH 43016 Phone: (614) 798-8215 Fax: (614) 798-1972