

How to Engineer an RNG Project:

Best Practices & Engineering Considerations for Meeting Pipeline Specifications

Aria Energy Olsson

How to Engineer an RNG Project:

Best Practices & Engineering Considerations for Meeting Pipeline Specifications

RNG WORKS Technical Workshop & Trade Expo September 2020

Kiran Sonawane

Engineering Manager Aria Energy

Ken Kilzer

Project Manager/Structural Engineer Project Manager/Structural Engineer Olsson

Linsey Brown

Olsson

Aria Energy & Olsson Partnership

- Master Engineers for Aria Energy
- Building Information Modeling (BIM)
 - Integrated and Coordinated Design
 - Revit, AutoCAD, Solidworks, 3D Scan
- Smartsheet

Renewable Energy Market

- Olsson Services
 - Electrical Engineering
 - Mechanical Engineering (HVAC & Plumbing)
 - Process Piping Engineering
 - Power & Distribution
 - Automation & Controls
 - Civil Engineering
 - Structural Engineering
 - Environmental Planning & Permitting
 - Architecture
 - Geotechnical
 - Survey
 - Non-Destructive Testing (NDT)

- Process Piping
 - H2S Removal Pipe Specifications
 - Highly Corrosive
 - Health Hazard
 - ASME, ASTM, AGA

- Structural
 - Coordination
 - Process Piping, Mechanical, Electrical
 - Containment

- Mechanical (HVAC & Plumbing)
 - Ventilation Requirements
 - Range from 6 to 36 Air Changes per Hour
- Electrical
 - H2S Sensors
 - CH4 Detectors
 - Gas Analyzers
 - Area Classifications
 - Class 1, Division 2, Group D

- Power & Distribution
 - Neutral Grounding Resistor (NGR) Requirements
- Architectural
 - Process Building H2 Occupancy, Division 2 Rating, Fully Sprinklered
 - Electrical Building F1 Occupancy, Not Sprinklered
- Geotechnical
 - Additional Borings to Accommodate Various Foundation Types
 - Mat Equipment Foundations, Shallow or Deep Building Foundations, and Drilled Pier Pipe Support Foundations
- Survey
 - Intrinsically Safe

- Civil Engineering
 - Utility Interconnect Routing
 - Distance vs. Financially Feasible
 - Coordination
 - MEP engineers, local utility companies, authority having jurisdiction (AHJ), RNG facility ownership, and landfill ownership
 - Challenging Gradings
 - Large amount of mechanical equipment pads

Steps for Success

- Preliminary Engineering Study
 - Zoning, site development, Inlet and product Gas quality, Metering requirements, right-of-way, building permit steps, regulatory, environmental permits, construction, operating and maintenance costs.
 - Location of the interconnection is critical
- Detailed Engineering Study
 - Technology Selection, Building permit drawings, Bid and construction drawings
- Selection of Engineering Consultant
- Proactive Steps in Permit Process
- Flowmeter and Gas Analyzer/Gas Chromatograph

Technology Selection

- Several methods and technologies available to condition biogas. Technology selection can be based on many criteria:
 - Inlet LFG make up, site and operating conditions, flow capacity/plant size, contaminants, product gas specs/ Tariff, Tradeoffs in capital costs vs. operating costs

Some Examples:

- Pressure/Temperature swing adsorption system
- High-selectivity membranes
- Water scrubbing systems
- Dry Scrubber/Solid scavenger system
- Catalytic Oxygen removal
- AGR Solvent systems
- Combination of these technologies working in unification is a must to meet the stringent specifications

Challenges/Barriers

- Financial and regulatory barriers
- Critical obstacle preventing RNG adoption is the financial uncertainty of the RIN market as it is susceptible to price fluctuations.
 - Stability in RNG values would encourage investment in RNG.
- Considerable differences between the permitting processes in different parts of the Country.
- Lack of clarity and consistent regulations in RNG quality standards (clean gas quality and interconnect standards)
 - Siloxane and minimum heat standards for RNG pipeline injection are so stringent that they often become unattainable
 - Overly stringent standards effectively prohibit the injection of RNG into pipelines
- Less awareness about environmental benefits of RNG is an issue

Product Gas Specifications- Example

GENERIC PRODUCT GAS SPECIFICATIONS	
CONSTITUENTS	RANGE
Carbon Dioxide	Between 1% and 3%
Nitrogen	Between 2% and 4%
Oxygen	Between 0.2% and 0.5%
Total Inerts	Between 4% and 5%
Total Heating Value	Between 950 BTU/ft ³ and 1100 BTU/ft ³
Hydrogen Sulfide	Between 0.25 grains and 0.31 grains per 100 ft ³
Total Sulphur	Between 1 grain per 100 ft ³ and 20 grains per 100 ft ³
Water Vapor	Between 4 pounds per 1 million ft ³ and 7 pounds per 1 million ft ³
Temperature	Between 110° F and 120° F

Aria RNG Facility

Southeast Oklahoma City Facility

Seneca RNG Facility

Kansas City RNG Facility

Oklahoma City Relocation

Contact Information

Kiran Sonawane

Engineering Manager Aria Energy 585.948-4603 Kiran.Sonawane@ariaenergy.com

Ken Kilzer, PE

Project Manager/Structural Engineer Olsson 402.970.2304 kkilzer@olsson.com

Linsey Brown

Project Manager/Structural Engineer Olsson 402.970.2323 Ibrown@olsson.com