

Jarret Chirafisi Adsorption Research Inc.

Overview

1. Goal

- 2. What Pressure Swing Adsorption Is / Is Not
- 3. Why Use It?
- 4. Suggestions For Technical Evaluations

- Given this year's format, we're going to err on the side of keeping things simple.
- **<u>If</u>**, by the end of this presentation:
 - You know 10% more about PSA than you know right now,
 -And-
 - You will consider PSA for your next project, we will be pleased.

Pressure Swing Adsorption What PSA Is

- RENEWABLE NATURAL GAS
- Adsorption is a natural phenomenon where gas molecules stick to a solid surface (adsorbent), based on differences in their natural tendencies to stick to the adsorbent.
- Adsorption is used is to separate a mixture, usually into a product and byproduct.
- Pressure Swing Adsorption (PSA) uses <u>high pressure</u> to force adsorption, then <u>lower</u> pressure to force desorption (regeneration of the media).

There are several good sources of knowledge on adsorption; we have contributed directly to many of them.

What PSA Is

- To separate $CO_2 + H_2O + H_2S + VOCs + Siloxanes + N_2 + O_2$ from CH_4 , <u>2 Stages</u> are required.
- Stage 1 removes the contaminants that adsorb more strongly than methane (CO₂ + H₂O + H₂S + Siloxanes + VOCs).
 - They are depicted as <u>*red*</u> in above diagram = Byproduct or Waste.
- The $CH_4 + N_2 + O_2$ pass through the adsorbent.
 - They are depicted as <u>blue</u> in above diagram = Product.

RNG Works 2020

What PSA Is

- Stage 2 treats the partly purified LFG ($CH_4 + N_2 + O_2$).
- Stage 2 removes the contaminants that adsorb less strongly than methane (N₂ + O₂)

 This is depicted as <u>blue</u> in above diagram = Product (RNG).
- The $N_2 + O_2$ pass through the adsorbent
 - They are depicted as *grey* in above diagram = Byproduct or Waste.

What PSA Is Not

Adsorption is:

Adsorption Research, Inc.

ARI

- <u>Not Expensive</u> relative to other separation methods:
 - CO₂ separation from LFG via PSA typically <u>costs less</u> than competing technologies.
 - \circ N₂ & O₂ separation via PSA is <u>expensive</u> relative to the CO₂ separation, but it's also a more difficult separation.
 - PSA is the only technology that can accomplish both the CO_2 separation from CH_4 and the $N_2 + O_2$ separation from CH_4 , in a practical manner.
- <u>Not Easy To Design</u> it requires experience, knowledge, and data. Achieving high-performance (product purity, methane recovery, efficiency, reliability, and economy) requires and expert!

RNG Works 2020

Why Use PSA?

Combination of Flow Rate & Contaminant Reduction

Combination of Flow Rate & Contaminant Reduction

- While the raw numbers differ, the shapes of the curves are nearly identical for both stages.
- CAPEX:
 - Typically tied to flow rate & contaminant reduction.
 - Relative cost of <u>small</u> systems can seem high due to fixed costs (e.g., controls), but it scales gradually.
 - There are opportunities for significant Balance of Plant savings.
- OPEX:
 - Typically tied more to flow rate, so it's pretty linear.
 - Relatively low operating pressures (~100 psi) means relatively low overall HP. (Stage 1)

RNG Works 2020

Technical Evaluation

When comparing process alternatives, we suggest a holistic approach:

- CAPEX
- OPEX
 - Horsepower (be sure to include feed and product compression requirements)
 - Media—life & replacement cost
- Recovery = Revenue
- Technical Support—types, availability, expected uptime
- Adaptability—how does the process handle changes in LFG flow rate, composition, and ambient conditions?

Thank You!

If you have questions about this presentation, adsorption, or how ARI can help you, please contact:

Jarret@Adsorption.com

Stay Safe